
The Case for Sparse Files

Douglas Thain and Miron Livny

Technical Report 1464
10 January 2003

University of Wisconsin
Computer Sciences Department

Abstract

Data intensive distributed applications require precise
interactions between storage and computation. The usual
abstraction of an ordinary file in a file system does not meet
these demands. We propose an alternative: the sparse file.
The sparse file is not a mass storage device, but rather a
named rendevous for distributed applications. The unique
feature of the sparse file is that may be incomplete: regions
of the file may explicitly be unfilled. In this report, we de-
scribe the interface and semantics of sparse files and give
examples of how they may be applied to improve the relia-
bility and flexibility of distributed systems. We demonstrate
that sparse files may be implemented both easily and effi-
ciently at user level without special privileges. We conclude
with a brief demonstration of a sparse file mediating the in-
teraction between storage and computation on behalf of an
unmodified scientific application.

1. Introduction

Fewer concepts may be more deeply entrenched in the
modern computer system than the idea of a file. Today, no
matter what the operating system, storage technology, or
file system in use, a file is nearly unanimously defined as a
simple byte array with a known length and accessed through
a small set of well-known operations.

Yet, the file is more than just an interface to a storage
system. In a traditional operating system kernel, the file
is also the focal point of interaction between the otherwise
autonomous systems that mediate access to CPUs and I/O
devices. As a process issues operations on a file, the sched-
uler may remove it from the CPU and place it in a wait
state. As file operations complete, a process may regain a
CPU, though not perhaps the one it initially had.

This subtlety is not present in most distributed sys-
tems. Software engineering principles dictate modularity,
so many significant and powerful systems address solely

the problem of managing CPUs or I/O systems, but rarely
address the interaction between the two. Nowhere is this
separation more complete than in the field of grid comput-
ing. This branch of computer science aims to provide ready
access to large amounts of computing power primarily for
solving scientific problems of unprecedented scale.

A wide variety of mature production systems for manag-
ing a grid of CPUs are deployed around the world. Systems
such as Condor [18], LSF [28], PBS [12], and LoadLeveler
[1] provide queueing, scheduling, accounting, and fault
tolerance for users that have massive numbers of CPU-
intensive jobs. However, these systems have very limited
I/O capabilities. Condor, for example, treats remote I/O as
an inexpensive task that may be performed while holding an
allocated CPU idle.

A number of research and production systems are explor-
ing the problem of handling large amounts of distributed
data. The Globus replica manager [27] seeks to duplicate
shared datafiles near to where CPUs will require them. The
LBL Storage Resource Manager (SRM) [22] exports disks
and tapes as allocable and schedulable resources. The Fermi
Sequential Access Manager (SAM) [19] seeks to maximize
the efficiency of a shared tape archive. Each of these as-
sumes CPU power is easily harnessed on demand as data
becomes available.

But how may the two meet?
The only interaction available to users today is alternate

sequential allocation. One must extract input files wholly
from an I/O system into temporary storage, then make use
of the CPU system, and perform I/O again once after the
CPU system has completed. The problem with this ap-
proach is that it prevents the overlap of potentially inde-
pendent resources, Further, the private scheduling policies
of each system may introduce unexpected latencies, leav-
ing both idle to the user. A better system would allow both
systems to be accessed independently and possibly simul-
taneously, with an automatic mechanism for synchronizing
when necessary.

We propose a return to the model present in the clas-



sic operating system. We introduce the sparse file as a
synchronization device between I/O and CPU subsystems.
Like traditional data structures such as the sparse array or
sparse matrix, the sparse file allows arbitrary portions of
itself to be empty. Unlike a plain file, it exposes what por-
tions of itself are available to be processed. The sparse file
serves as a named rendezvous between any combination
of jobs and grid subsystems. This rendezvous introduces
flexibility in allocation. Subsystems may be allocated in-
dependently and simultaneously, thus allowing overlap for
improved throughput while still enforcing synchronization
when necessary. The sparse file also fills other useful roles
when knowledge of the completion of a file is necessary for
a reliable system.

In this paper, we explore how sparse files may be used
to couple existing systems together. We begin by describ-
ing exactly what a sparse file is and how it works. We then
discuss how four common distributed computing structures
may make use of the sparse file. We present a user-level
sparse file server that is simple and provides reasonable
performance for distributed applications. We also demon-
strate efficient ways of accessing sparse files from applica-
tions without rewriting, rebuilding, or applying special priv-
ileges. Finally, we give a short practical example of a sparse
file as a synchronization device in a working system.

2. Environment

The concept of a sparse file is most useful in large,
loosely-coupled, wide-area systems. Such systems have
been known by various names over the years, including
distributed systems, meta-computers, peer-to-peer systems,
and most recently, grids. We will use the latter term. Such
systems are unique not because of their performance prop-
erties, but in the high degree of independence of their com-
ponents. We are targeting systems with these characteris-
tics:

Distributed ownership. Every component in a grid, rang-
ing from clients to servers and the network in between, may
conceivably have a different owner. No global scheduling
policy could possibly satisfy the needs of all parties simul-
taneously, nor does there exist any device for implement-
ing such a policy. Although some components may accept
reservations and issue schedules, each interaction ultimately
occurs according to the temporary and explicit consent of
the principals involved.

Frequent failure. As the number of devices in a system
scales, so does the frequency of failure. Networks suffer
outages, machines are rebooted, and programs crash. Own-
ers of resources may offer their hardware for public con-
sumption and then suddenly retract it for their private use.
Processes executing in such a system are frequently placed
on and evicted from several CPUs before they finally ex-

ecute to completion. Data transfers make suffer multiple
disconnections and other failures before running to comple-
tion.

Uncertain delays. As a changing community of users
clamors for service from a decentralized, fault-prone ser-
vice, few guarantees on service time can be made. Prop-
erties ranging from process queueing time to data transfer
time will vary wildly with the many variables in the system.

Transience. Few items in such a system will be truly
permanent. Much of the complication necessary to use the
system lies in the tasks surrounding the actual work to be
done. For example, programs do not simply execute on a
CPU; they must discover, claim, activate, and release it in
a well-specified way. Likewise, data files are not simply
present or absent in the system, but move through a life-
time; they are first expected, then in transit, then arrived,
and finally evicted.

This is the environment that has driven our need for
sparse files. Let us proceed to describe exactly what a sparse
file is, and then explain how it can put to use to address these
problems.

3. Sparse Files

A sparse file is a named rendezvous for process synchro-
nization and data exchange.

Like a plain file, it provides a sequentially-numbered ar-
ray of storage bytes. Any position in the array may be empty
or may contain a single byte. A range is a sequential set of
positions in the array which may or may not be filled. A
range of filled bytes is known as an extent, while a range of
empty bytes is known as a hole, in accordance with conven-
tion.

Unlike a plain file, holes are not assumed to be filled with
a default value. Rather, they are considered to represent ab-
sent data. An attempt to read from a hole will result in a de-
lay or an explicit timeout, as described below. This allows
sparse files to be used for process synchronization. If a pro-
cess attempts to read a range in the file, several things may
happen. If the range begins with an extent, the overlapping
portion will be returned to the process. If the range does not
begin with an extent, then the process will be blocked until
a writing process provides one.

Also unlike a plain file, a sparse file has a size attribute
that is set and queried independently of the file data. The
writing of an extent has no bearing on the file’s size at-
tribute. A sparse file may contain several extents and yet
have no size attribute. Or, it may have a size attribute set in
a position where no extents exist. If a reader examines the
last extent in a sparse file but does not find a size marker,
then the sparse file responds as if the reader found any other
hole. Only if the reader attempts to read up to or beyond an

2



����������������������������������
�����������������
�����������������

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300

��������������
�������������� ��������������

��������������

����������������������������������
����������������������������������

	�	�	�		�	�	�	

�
�
�

�
�
�


����������
����������������

��������������

������������������
������������������

returns eof
Step 9:

returns 100−300
Step 6:

read 300−500
Step 7:

Step 4:

read 0−500
Step 2:

Step 1:

Step 3:

Step 5:

Step 8:
setsize 300

(blocked)

(blocked)

write 0−100

returns 0−100

write 225−300

read 100−500

write 100−225

(Writer) (Reader)

Figure 1. A Sparse File

existing size marker will it receive an ordinary end-of-file
indication.

The purpose of this unusual size marker is to assist a con-
sumer with interpreting the ’completion’ of a file transfer.
The sparse file is not a storage device per se, but a synchro-
nization device that can be used to communicate data items
such as files and I/O streams.

For example, a sparse file may be used to hold the out-
put stream of an application. The total size of such an out-
put stream is truly unknown until the application completes.
Thus, the application indicates the sparse file is ’complete’
by setting the size marker before exiting. If the application
should abort, fail, or simply be delayed in any way, a reader
of the sparse file would be explicitly aware that the output
is incomplete.

Or, a sparse file might be used to stage data from an ex-
isting file of fixed size. The writer could first set the size
attribute, and then begin to push data into the sparse file. A
reader of the slowly filling sparse file can use the indepen-
dent size for several purposes. It can use the absolute size
to guide allocation of memory and other resources. It can
compare the available data with the size marker to estimate
completion time. As in the previous case, it may immedi-
ately consume what data is available without being misled
by the non-completion of the transfer.

Finally, every interaction with the sparse file is limited
by a timeout. This simple escape clause allows a client
to control the interaction between CPU and I/O access. In
addition, both readers and writers may be blocked due to
any implementation-specific concerns such as disconnected
storage. We will see examples of this below.

Figure 1 is an example of two processes interacting
through a sparse file. On the left side, a writer process writes
three extents into the file and then sets the logical file size.
On the right side, a reader process attempts to read the file
sequentially, and is eventually satisfied over the course of
several operations.

Here’s how the example works:
(1) The writer begins by writing 100 bytes to the begin-

ning of the file. (2) The reader, not knowing how much is
available, attempts to read bytes 0-500. Only the available
bytes between 0 and 100 are returned. (3) The writer adds
another 75 bytes to the file, this time at position 225. This
leaves a hole between positions 100 and 225. (4) Again,
the reader knows nothing about the rest of the file, and sim-
ply attempts to read bytes 100 through 500. There is a hole
starting at position 100, so the reader is blocked. (5) The
writer fills the hole by writing 125 bytes starting at posi-
tion 100. (6) This action un-blocks the reader, who then
receives all the data between positions 100 and 300. (7)
The reader continues to request the data between positions
300 and 500. Note that the reader does not know how “big”
the file is, because it has no logical size yet. The reader

3



is blocked because the range after 300 appears to be a hole.
(8) The writer completes the file by explicitly setting its size
at byte 300. (9) Finally, the reader is unblocked and is given
an indication that the end of the file has been reached.

4. Practicalities

Figure 2 shows a concrete interface to a sparse file ser-
vice. It borrows from several existing interface designs.
Three commands closely follow the Internet Backplane Pro-
tocol (IBP) [20] approach to name and space management.
The remaining eight commands manipulate sparse files di-
rectly and are more closely related to the POSIX [15] phi-
losophy of file management.

Three commands manage the namespace of the sparse
file service. The create command creates a new sparse file
and returns a name chosen by the service. (The client can-
not choose the file name.) The file is issued with a lease.
[11] The service will destroy the file after the lease time has
expired. However, it will never re-issue the same file name
twice. Once generated, a file is unique for the lifetime of the
service. A client may propose a lease time as an argument
to create, but the service may revise the actual lease time
downward. Before the lease expires, the client may attempt
to renew it or delete it. The service is free to implement
any sort of policy limiting the renewal of a file.

The open command looks up a file by name and returns a
file descriptor (fd) to be used to access the file temporarily.
close discards this fd. read and write access an open file
according to the sparse file semantics. setsize fixes the log-
ical size of a file. status gives the positions of any extents
in the file and its logical size, if set. wait may be used to
block the caller until the file has a logical size and an extent
that fills it.

The behavior of this interface in ordinary situations
should be quite obvious to any programmer familiar with
plain files. However, the complexity in both the design and
use of most distributed systems lies in the handling unusual
situations. Let us shed some light on the consequences of
mishaps, errors, (and possibly malice) with respect to sparse
files.

According to our philosophy of error management [26],
error interfaces must be concise and finite. We have con-
densed the wide variety of possible error modes in the
sparse file interface into four possibilities shown in Figure
3. The auth error indicates that the client, however authen-
ticated, is not authorized to perform the requested action.
The name error indicates that the client has specified a mal-
formed or nonexistent name, such as a bad network address.
The space error indicates that there is no more storage avail-
able, but the client is free to try again later. The timeout
error indicates that, for any other internal reason, the com-
mand couldn’t be completed in the time specified by the

client.
There exist a myriad of other error possibilities as di-

verse as the computer systems available to us. We make no
attempt to catalog any sort of error specific to a machine
or system, such as a lack of file descriptors or an inability
to access internal storage. If a server suffers some inter-
nal problem that cannot be resolved by time and cannot be
expressed in the standard error interface, then the server is
obliged to terminate the client’s connection and take any in-
ternal recovery or error reporting action that it deems nec-
essary.

All commands are issued in the context of a session such
as a TCP connection. Although not expressed explicitly
in Figure 2, the session is intimately connected with the
semantics of the interface. The data-writing commands,
write and setsize, are not atomic and must be consummated
with a commit command, which blocks until all changes
are forced to stable storage. If the session is broken – i.e.
the connection is lost or the process is killed – then some,
none, or all of the requested changes may be visible to
later clients. A robust client may return and reattempt any
uncommitted actions without knowing whether they have
completed successfully. The namespace commands create,
delete, and renew are atomic and immediately persistent if
successful.

Unlike POSIX, an open file is not locked. That is, a
file may be deleted while open. In this case, any attempts
to access a file desciptor referring to a deleted file return
the error name. The open file descriptor is retained in this
invalid state until the client issues a close. We chose this
behavior in order to afford the owner of a service the max-
imum possible control to reclaim space from remote users.
If we had chosen the POSIX semantics, which require a
file to be deleted lazily at the last close, this would allow
a remote user to hold storage indefinitely contrary to the
owner’s wishes.

The timeouts used in the sparse file interface should be
considered a garbage collection mechanism and not a pre-
cision timing tool. The unbounded delays present in every
production operating system, storage device, and commu-
nications network prevent any other possible interpretation.
A read that should time out in five seconds may be delayed
by fifty seconds if the server process itself is swapped out
to backing store. The reply to a create indicating a life-
time of one minute could be delayed for several minutes in
a congested TCP stream.

For these reasons, the sparse file interface guarantees that
a name is never issued twice. Regardless of the many ways
that a client and server may disagree on matters of timing,
a client will never accidentally access the wrong file. How-
ever, a client must always be prepared to deal with a file
that returns the name error, indicating it no longer exists. A
side effect of this requirement is that it (sadly) permits the

4



Command Arguments Results
create lifetime, timeout name, lifetime
delete name, timeout
renew name, lifetime, timeout lifetime
open name, timeout fd
close fd, timeout
read fd, length, offset, timeout data, length
write fd, data, length, offset, timeout length
setsize fd, size, timeout
status fd, timeout ranges, [size]
wait fd, timeout
commit fd, timeout

Figure 2. Sparse File Interface

Error Type Description
auth Not authorized to do that.

name No file by that name (anymore.)
space Not enough storage space to complete.

timeout Couldn’t complete in the time requested.

Figure 3. Error Interface

owner of a storage device to break a valid lease and delete a
file before its lifetime has expired. Although this sort of un-
friendly behavior will certainly have social consequences,
it does not violate the sparse file interface. Clients must be
prepared to encounter a name error, whatever its source.

An even worse situation may occur if the backing store
for a sparse file server is irrevocably lost, thus breaking the
mechanism for generating unique names. A client holding a
file name issued by the old server might attempt to present it
to a new server established at the old address. If the names-
paces of the new and old servers overlap, the client might
silently access a file with the same name but different data.

The are several possible mechanisms to minimize this
problem. One is to make use of a highly-reliable, central-
ized, unique name generator shared by all such file servers.
This has the benefit of guaranteed uniqeness, barring the
failure of the central server. A more scalable and practical
solution is to generate names by incrementing a persistent
counter, and then issuing the resulting number with a ran-
dom string appended. This is not guaranteed to be unique,
but the likelihood of name collision may be made vanish-
ingly small by increasing the length of the random string.

5. Applications

Let’s consider how a sparse file service may be put to use
in a variety of distributed systems. We will consider four
structures that reflect real applications and systems related
to grid computing.

In each example, we will use a fairly general model of
execution that applies to a variety of existing systems. We
assume that the user submits jobs to be done to a process
called the planner. The planner maintains a persistent job
list and is responsible for finding places to execute jobs,
monitoring their progress, and returning results to the user.
The planner submits jobs to a remote queue, which assigns
jobs to one or more CPUs. The queue may delay the exe-
cution of a job indefinitely as it mediates between multiple
users according to its local policy. Once placed on a CPU,
the job begins execution. We assume that it is common for
the job to be evicted from a CPU and returned to the queue,
perhaps saving its computation in the form of a checkpoint.
We also assume that the job is not modified to use sparse
files, but is instead coupled with an adapter, which converts
its standard I/O operations into sparse file commands. In ad-
dition, the adapter can communicate with the process queue
and ask to release the CPU and re-enter the process queue,
perhaps with conditions on its restart. Finally, a sparse file
server makes a storage device available through the inter-
face we have described above.

We call this model autonomous scheduling. It has all
of the components of a CPU scheduler in a time-sharing
operating system: jobs, queues, buffers, I/O devices, and so
on. It also has the same sort of events: jobs are scheduled,
preempted, and blocked on I/O. However, there is no global
policy that joins the whole system together. Even if it were
desirable, it would not be possible. A queue cannot know
what I/O devices an adapter uses, nor vice versa.

5



Thus, every interaction requires the consent of the com-
ponents involved. An I/O device cannot cause a job to be
preempted from its CPU. Rather, the I/O device informs the
adapter that a delay is likely, and the adapter decides what
to do next. It might choose to access another I/O device, to
re-enter the process queue, or simply busy-wait if it believes
the delay will be short.

Of course, there is an incentive not to busy-wait exces-
sively. The user that consumes excess CPU while busy-
waiting pays for the privilege. CPU consumption is usually
accounted for in some fashion, and the consumer who does
not pay in the form of money is likely to pay in the form of
lost priority.

5.1. Staged Input

As we noted above, grid applications will require in-
teractions between independent process queues and data
archives. Because each of these systems may delay the
user’s request for service indefinitely, we use the sparse
file to connect them together. Figure 4 demonstrates how
a sparse file may be used as a synchronization between a
process queue and a data archive.

To begin, the planner must issue a create command at
the sparse file server to generate a unique input file name.
It then may interact with both the queue and the archive in
either order or simultaneously. On the queue side, the plan-
ner submits the job along with its adapter and instructions
to read the sparse file created in the first step. After some
delay, the queue executes the job on a CPU, which then at-
tempts to read from the sparse file server. On the archive
side, the planner requests the delivery of the needed input
file. After another delay, the archive begins to transfer the
file into the named sparse file using the write and setsize
commands.

Functionally speaking, it doesn’t matter whether the data
transfer completes before the job begins to execute or vice
versa. If the job should require input data from the sparse
file before it is available, it will simply block. If a portion of
the file is available, the job may read and process it without
waiting for the entire transfer to complete.

Most importantly, the adapter may interact with the
queue to manage its CPU consumption in light of the de-
veloping I/O situation. If the job makes progress using the
first half of the input file, and then discovers the second half
is not yet available, the adapter may request to return to the
queue and be rescheduled at a later time, perhaps when the
whole file has arrived. Just as in a traditional CPU sched-
uler, the job is not aware of such technicalities. The policy
is present in the adapter, which may state something like:

If I am stuck more than one minute waiting for
I/O, return to the process queue for five minutes.

Planner

Archival

Storage

� � �
� � �
� � �

� �
� �
� �1: create

Server
File
Sparse

4: read

Adapter

Job

3: execute

2:
 su

bm
it

Queue

5: reschedule

2: submit

3: w
rite

Figure 4. Staged Input

Upon rescheduling, the adapter may reconsider the situa-
tion and continue to work or return to the queue once again.

If the input file should be deleted, whether due to an ex-
pired lease or a deliberate eviction by the owner, the adapter
must exit, indicating to the queue that the process cannot
execute at all. The archive, upon discovering that the target
name no longer exists, will also abort the transfer. A suit-
able message is returned to the planner, which may restart
the whole process or inform the user as necessary.

Without the sparse file server, we may accomplish some-
thing similar, but with far less flexibility. If the sparse file
server is replaced by a plain file server, then the entire data
transfer must be completed before the job is even submitted.
This is because the adapter would not be able to distinguish
between a partially-transferred file and a complete file. Fur-
ther, we may unnecessarily occupy space at the file server,
and be charged for occupying it while the job sits idle in the
queue.

This is not to say that job submission and data trans-
fer should always be simultaneous. Indeed, if the transfer
time is very long and the job queueing time is very short,
transferring the whole file before submitting the job is sen-
sible. Rather, the sparse file semantics allow a wide vari-
ety of scheduling decisions to be made without relying en-
tirely on performance assumptions that may be unreliable.
The job and the data may be queued simultaneously with-
out suffering an incorrect execution when our performance
assumptions are violated.

6



Planner � � �
� � �
� � �

� � �
� � �
� � �

Adapter

1: create

Server
File
Sparse

Adapter

4: write

4: read

3: execute

3: execute

2:
 su

bm
it

2: subm
it

JobB

JobA

Queue

Queue

5: reschedule

5: reschedule

Figure 5. Pipeline

5.2. Pipeline

A significant number of grid computing applications are
conceived as a pipeline of processes, each reading its in-
put from the output of the previous stage. An example of
such a pipeline is the series of computation steps required
by the Compact Muon Solenoid (CMS), [13] a high-energy
physics experiment in preparation at CERN. CMS connects
several distinct software packages for the generation of ran-
dom events, the simulation of the detector, and the recon-
struction of raw data, whether simulated or measured.

Figure 5 shows how a pipeline may be constructed using
a sparse file. As before, the planner creates a file at the
sparse file server. It then submits two jobs, perhaps to two
different queues. The jobs may then begin to execute in any
order. As job A produces output, it writes it to the sparse
file. As such data becomes available, job B is unblocked
and may read and process it. Either process may ask to be
rescheduled if it is blocked waiting to access the sparse file.

This service may seem remarkably like the standard pipe
abstraction. However, there are two key differences. First,
the sparse file permits random access, so it may be used
even when the interaction between the processes is not se-
quential. This is common between applications not specif-
ically designed for a distributed system. Second, a sparse
file does not equate a disconnection with an end of file con-
dition. This property makes this construction robust to the

common errors that plague a distributed system. If the net-
work should fail, both processes may reconnect and con-
tinue to work without harm. If one process is evicted or
killed, it may resume from its last checkpoint without harm-
ing the other.

The drawback is that the sparse file contains the entire
history of the interaction. Thus, it is not suitable as a con-
nection between processes that run indefinitely or exchange
more data than can be stored.

5.3. Buffered Output

A number of systems have recognized the utility of a
buffer server [6] that provides fast access to nearby stor-
age while delivering data asynchronously to another target.
Examples of this idea include the Trapeze buffer server, the
WayStation [17], and the Kangaroo system. [23]

The complication of using a buffer server is the problem
of reconciliation. How much time must a process wait to let
the buffer finish its work? Will it know if the buffer fails?
How can it retract work that relies on a failed buffer? These
questions are usually answered unsatisfactorily in one of
two ways:

1. The writer must trust the buffer to complete reliably
and in bounded time. This assumption seems unwise
in a grid environment where storage may be borrowed
from a third party and networks and systems regularly
fail.

2. The writer must block until the buffer has finished.
This solution is reliable. If the buffer should fail, so
will the writer, and the whole system may be re-tried.
However, this also forces the caller to waste a CPU al-
location by holding it idle while waiting for the buffer
to complete its work. This is exactly the problem a
buffer server is designed to solve, so this answer is
counter productive.

A better solution is built using a sparse file, as shown
in Figure 6. A job executes via a remote queue as in the
other examples. However, it writes its output as a series
of messages passed to a nearby buffer server. These mes-
sages include write commands which carry file data as well
as any setsize commands issued when the job completes.
Once complete, the job may exit the queue and return to
the planner without worrying about the buffer in any way.
Asynchronously, the buffer sends the file updates back to
a sparse file server containing a file created by the planner.
The planner may watch the file with the wait command and
detect when all the messages have arrived. It may then in-
dicate to the user that the job has completed.

The buffer is free to delay or reorder packets as much
as it wishes. The user must simply inform the planner how

7



Planner

� � �� � �� � �� � �
� � �� � �� � �� � �

� ��
� �� � � �� �

� �	 	 
 
� �
�

Adapter

Job

3: execute

Server
File
Sparse

4: write

Buffer

Server

w
rite

w
rite

setsize

2:
 su

bm
it

1: create

Queue

5: reschedule

6: fo
rward

Figure 6. Buffered Output

long she is willing to wait for the results before attempting
the job again. Of course, a re-submitted job must be as-
signed to direct its output to a different sparse file, lest the
output of two runs be confused. Even if a faulty buffer dis-
cards messages, a penalty is paid only in performance. The
planner is capable of telling when the buffered operations
have completed.

Finally, this approach gives the planner much better con-
trol over storage allocation and the delivery of complete re-
sults, no matter how compelx the asynchrony of the system.
If the planner becomes disconnected from the queue, job,
and buffer server, it may simply allocate a new sparse file
and run the job in a different queue at another site. Because
the job outputs are insulated from each other, the planner
may leave both jobs running and simply accept whichever
output arrives first. If desired, the old job may be abandoned
completely by deleting the old sparse file. Delayed buffered
messages arriving from the old job will be discarded as they
discover their target file does not exist.

5.4. Audited Output

Most applications that create output destined for an
archive requires a certain degree of auditing. That is, their
output must be checked by a human or a program for legit-
imacy or value before being added to a permanent archive.
Such auditing may take place when the output is completed,

Planner � � �� � �� � �
� �� �� �

Adapter

1: create

Server
File
Sparse

4: write

3: execute

2:
 su

bm
it

JobAQueue

Archival

Storage

5: reschedule

7: ingest

8: read

6: 
au

dit

Figure 7. Audited Output

but it is not uncommon to also happen as the application
runs.

An example of auditing takes place at the National Cen-
ter for Supercomputing Applications (NCSA) in Cham-
paign, Illinois. Here, researchers submit batch jobs to run
the Gaussian [10] atomic simulation application. Gaussian
generates a very large log output as it runs over the course
of hours or days. By examining the log file as it is pro-
duced, researchers may identify useless runs (i.e., divergent
results implying bad parameters) early in the execution of
the job. Such runs may be cancelled to avoid wasting com-
puting resources. Likewise, the output may be evaluated
after the job completes before deciding whether to place it
in archival storage.

Auditing is currently implemented informally. The job
writes its output to the local disk of its execution site. An-
other process 1 periodically copies the output to a mass stor-
age system, when then may automatically move the (possi-
bly incomplete) output file to archival storage during peri-
odic backups. Although this system is acceptable for small-
scale use, it consumes twice the storage necessary, does not
permit the job to migrate, and potentially archives invalid
output files.

Auditing may be implemented easily and efficiently
without duplication of storage by using a sparse file as the
synchronization point between three parties: the applica-

1This process is known colloquially as the “grid-enabled cat”, referring
to the simple UNIX program of the same name.

8



tion, the user, and the archive. This is shown in Figure 7.
The job executes as in previous figures and may migrate and
rescheduled as necessary. As the output is produced to the
sparse file, a human (or program) may audit the output at
leisure by using the sparse file interface. The completion
of the output is detected when the job sets the logical file
size. After the job completes, the sparse file may remain
according to the constraints of its lease. If the user accepts
the output as valid, it may direct the archival system to in-
gest the output file. If the user rejects or simply forgets to
audit the file, it will eventually be reclaimed by the sparse
file server.

6. Implementation

We have argued that the sparse file model simplifies
the construction of a variety of distributed systems. Next,
we will demonstrate that sparse files may be easily imple-
mented at user level with no special privileges. This im-
plementation gives reasonable performance within certain
bounds, although we will point out its performance limita-
tions and leave its optimization open for future work.

6.1. Server

We have built a sparse file library and server in user
space on top of a standard POSIX operating system and
filesystem. This permits it to be deployed on arbitrary ma-
chines without special privilege or kernel modifications. We
make no claim that this implementation gives optimal per-
formance. Instead, we intend to show that a simple imple-
mentation exists and that the proper semantics can be pro-
vided with reasonable performance under expected loads.

In order to implement the sparse file semantics correctly,
we must carefully examine the semantics of the underlying
system. The various implementations of the POSIX inter-
face vary greatly in how they guarantee data integrity after
a crash. Some, like NFS [21] guarantee the atomic persis-
tence of every individual operation. Others, like AFS [14]
make no guarantees until a file is successfully closed. Local
file systems differ in the narrowest of subleties such as the
ordering of distinct write operations. In order to give the
correct semantics in all of these environments, we build our
system using very conservative assumptions that we believe
to hold universally:

1. All updates to a single file are suspect until a successful
fsync and close.

2. rename may be used to atomically replace one file
with another.

With these assumptions, we may implement a sparse file
in terms of two standard POSIX files, shown in Figure 8.

One standard file (data) contains the literal sparse file data
with a one-to-one mapping from sparse file offsets to phys-
ical file offsets. Explicit holes in the sparse file are repre-
sented as implicit zero-filled holes in the physical file. The
second file (meta) contains all of the sparse file’s meta-
data, such as the logical file size and a list of filled regions
in the file.

When updating the data in the sparse file, new data is
simply written into data using the standard POSIX I/O
commands. The meta-data, including a linked list of ex-
tents, is kept in memory. To implement commit, four steps
are necessary:

1. fsync is called on data to force all newly-written data
to stable storage.

2. A new file (meta.tmp) is created and filled with the
updated meta-data.

3. fsync is called on meta.tmp to ensure it is on stable
storage.

4. rename is called to atomically replace meta with
meta.tmp.

If a crash should occur before these four steps complete,
then some portion of the new data may be in stable stor-
age, but without the updated meta, such areas will still be
perceived as holes. If the user is writing over an existing
extent, then such ranges may or may not reflect the new
data, which is still consistent with the sparse file semantics.
The atomic rename ensures that meta is never found in a
partially reconstructed state.

6.2. Performance

Our primary concern for the performance of the sparse
file is that it provides sustained throughput competetive with
plain files. This is an inflexible requirement necessary to
interact with high-bandwidth grid CPU and I/O managers.
The latency of individual operations is less of a concern, as
they are likely to be dwarfed by the latencies of operating
in a wide area network.

We compared the throughput of the sparse file library
against that of plain files on a stock workstation. The ex-
perimental machine had a MSI 694D Pro-AR motherboard

0 100 200 300

����������
���������� ��������������

����������
0 0 0size = unknown

ranges = 0−100, 200−300

Meta−Data File Data File

Figure 8. Sparse File Implementation

9



with a VIX 694X Chipset, two 933MHz Pentium-III CPUs,
and 1 GB SDRAM. The I/O subsystem included a Promise
ATA 100 IDE disk controller, and a 30GB Ultra ATA 100
IBM 307030 disk. The machine ran Linux 2.4.18 with an
EXT3 file system.

We will show the results of writing files to disk. Read
performance was largely the same. Each point in the follow-
ing graphs represents the mean of 25 measurements, less up
to five outliers. Outliers were identified as measurements
less than 80 percent of the mean, and were found to be due
to periodic system tasks such as maintenance and logging.
The variance of the remaining data, elided for clarity, were
less than ten percent of the mean.

Figure 9(a) shows the burst performance of writing large
files into the system buffer cache. These writes are consid-
ered unsafe because they are not followed by a commit (for
sparse files) or a fsync (for plain files) and may be incom-
plete or corrupted if a system reset occurs between writing
the data and re-reading it. Figure 9(b) shows the same ex-
periment, this time performed safely by completing each
transfer with a commit or fsync as appropriate. In both
cases, the sparse file is quite competitive with the plain file.
The expense of manipulating the extent list is quite small:
there is only one continuously growing extent. Likewise,
the extra few synchronous operations needed to implement
commit are hidden by the primary task of moving the raw
data.

Figure 10(a) demonstrates unsafe random write perfor-
mance. Here, we wrote 4KB blocks at random offsets into
files of increasing size. The total amount of data written
was equal to the file size, but the files were heavily frage-
mented by the random offsets. The sparse file has very poor
performance as the number of extents increases. A simi-
lar situation is seen in Figure 10(b), which shows safe ran-
dom writes. We may remedy the situation by increasing
the block size modestly. Figure 11(a) show the same ex-
periment with a block size of 128 KB. The sparse file is
measurably slower, but still exceeds the raw bandwidth of
the disk. The two types are again undistinguishable in Fig-
ure 11(b), which writes safely and randomly with a 128 KB
block size.

To use this naive implementation efficiently, we must
take care not to use microscopic block sizes when writing
randomly. This is not an unreasonable burden when we con-
sider that the other constraints of distributed computing tend
to encourage larger block sizes.

6.3. Adapter

Although the enthusiastic programmer might wish to re-
write applications to use the sparse file interface directly, we
can hardly expect the vast majority of programs to be modi-
fied at the appearance of a new storage system. Likewise, if

Job

Server
File
Sparse

�����
�����
�����
�����

�����
�����
�����
�����

Pluggable File System

Grid
FTP

HTTP Chirp Sparse
Files

open, read, write, lseek, close

Other Grid Services

Queue

reschedule
request

Figure 12. Adapter Detail

we aim to use widely distributed systems not directly under
our control, we must accept the installed operating systems
and cannot deploy kernel changes to support sparse files.

To make the sparse file service useful, we must have a
unprivileged adapter to connect existing programs to new
storage devices. These devices are sometimes know as in-
terposition agents. [16] There are many techniques for ac-
complishing this, ranging from system call interception to
binary rewriting. An excellent review is given by Alexan-
drov et al. [4]

We have built a general-purpose adapter for connecting
standard POSIX applications to a variety of distributed I/O
services. [25] This adapter is called the Pluggable File Sys-
tem (PFS) and is shown in Figure 12. PFS speaks a variety
of protocols, including Chirp [9], GridFTP [5], HTTP, Kan-
garoo [23], SRB [7], and of course the sparse file interface.

PFS is built with Bypass [24], a general tool for build-
ing such interposition agents. It is a shared library with the
same interface as the standard C library, so it may be applied
to any dynamically-linked application that uses ordinary I/O
calls. Because the interposition technique involves simple
function calls, the overhead of the adapter itself is measured
in microseconds, which is inconsequential compared to the
cost of the network and I/O operations themselves.

PFS is structured much like the I/O system of a stan-
dard operating system. For every process, it has a table
of open file descriptors, a set of seek pointers, and device
drivers that represent each of the remote protocols. Appli-
cations may access files in the local system using ordinary
path names, or they may explicitly use fully-qualified names
in a syntax resembling a URL:

10



0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(a) Unsafe Write

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(b) Safe Write

Figure 9. Sequential Write with 4KB Blocks

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(a) Unsafe Write

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(b) Safe Write

Figure 10. Random Write with 4KB Blocks

11



0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(a) Unsafe Write

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size (MB)

Plain File
Sparse File

(b) Safe Write

Figure 11. Random Write with 128KB Blocks

/http/www.yahoo.com/index.html
/ftp/ftp.cs.wisc.edu/RoadMap

/sparse/server.wisc.edu/105-qnvismgy

The job of the adapter does not end with the physical
transformation of its I/O into sparse file operations. It must
also provide logical transformations to deal with all of the
issues that the application is unaware of. This includes a
name mapping, a reliability policy, and a scheduling policy.

Although some applications may be instructed to use
sparse files by explicitly passing fully-qualified names as
arguments, most applications use fixed file names of one
kind or another. For example, most programs implicit ac-
cess /etc/passwd to find names in the user database.
For better or worse, many scientific applications use only
hard coded input and output file names. PFS provides a
name mapping to support such applications. This is simply
a table that converts simple file names into fully-qualified
file names:

/etc/passwd = /sparse/server.wisc.edu/abc
/tmp/output data = /sparse/server.wisc.edu/def

<stdout> = /sparse/server.wisc.edu/ghi

In the structures that we have described above, the plan-
ner generates sparse file names as it creates them, and is thus
responsible for creating a name mapping for each process.

Because the job is not aware of the vital setsize and com-
mit sparse file operations, the adapter is responsible for
choosing appropriate times to execute them. Because set-
size is used to indicate the completion of an output file, the
adapter only issues it on an output file when the applica-
tion has successfully run to completion. It cannot perform

it any earlier, as some jobs may open and close a file mul-
tiple times before they are truly done with it. The commit
operation is issued when the application requests an fsync
and also at the end of execution.

The job is also not aware that it is executed by a remote
process queue, so the adapter must manager that interaction
as well. Although rescheduling policies may be arbitrarily
complex, ours is quite simple. The planner may specify a
minimum time it is willing to allow the job to hold a CPU
idle while it waits for I/O. If this time expires, it also gives a
minimum time to wait in the queue before it may be sched-
uled on another CPU to reconsider the situation. This policy
is specified to PFS as follows:

max io wait time = 60
min queue wait time = 300

7. Example

We will briefly demonstrate the use of a sparse file as a
synchronization device for input data, as shown in Figure 4.
A more extensive evaluation of sparse files ina production
setting is planned.

For didactic purposes, we use corsika, the first stage of
the AMANDA software pipeline. [2] From a physical sci-
ence perspective, corsika generates a shower of neutrinos
from a random seed and a large set of parameters describing
the physical universe. From a computer systems perspec-
tive, corsika reads about 2.6 MB from a set of five input
names, and computes for about 100 seconds as it produces
about 1.2 MB of output in two output files.

We submit corsika to the Condor system at the Univer-
sity of Wisconsin. Using PFS as an adapter, its fixed input

12



and output file names are directed to a nearby sparse file
server. In addition, the adapter is given a simple scheduling
policy:

If I am stuck more than ten seconds waiting for
I/O, return to the process queue for thirty sec-
onds.

While the process is under the control of the Condor sys-
tem, we simulate a slow data source by hand, transferring in
the input files at different times to demonstrate three differ-
ent sparse file interactions. In Figure 13, the data transfer
begins immediately, but the process is delayed in the queue.
When it is finally scheduled, the data are available, and it
executes immediately. In Figure 14, the job begins execut-
ing immediately, but the data transfer is delayed. Accord-
ing to the adapter’s policy, the job is activated repeatedly,
but seeing no data available after ten seconds, returns to the
queue. Once the data start to arrive, the job executes to com-
pletion. In Figure 15, the job begins to execute while the
data it needs are still in transit. It begins executing slowly,
occassionally blocked while waiting for needed input data.
As the data transfer outstrips the job’s input needs, it begins
to speed up.

8. Related Work

A variety of projects are exploring the design space
of fundamental storage devices for distributed computing.
These devices form the “building blocks” of distributed
storage and are typically managed by a higher-layer system.
The minimalist Internet Backplane Protocol (IBP) [20] is an
interface to plain files with flexible policies. and controls for
space and time management. GridFTP [5] is an extension of
the standard File Transfer Protocol (FTP) which emphasizes
security and high-performance access to large files. NeST
[9] is a single storage device encompassing multiple proto-
cols, space management, replication, security, and quality
of service. All of these devices export a plain file abstrac-
tion,

The ExNode [8] is higher-level structure built on top of a
distributed set of IBP servers. The ExNode is analogous to a
standard filesystem inode and provides what is described by
its designers as “something like a file.” It logically merges
extents spread across a distributed system into a single log-
ical file, possibly with holes or multiple redundant units.
Because the devices underlying the ExNode are physically
remote, no portion of the ExNode is guaranteed to be avail-
able at any given time.

The ExNode and the sparse file both address a similar
problem, albeit from different perspectives. The ExNode is
a structure for aggregating remote resources. The sparse file
is an interface for communicating with a file. The ExNode,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

F
ile

 S
iz

e 
(M

B
)

Time (seconds)

Input Staged
Output Produced

Job Running

Figure 13. CPU Delayed

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

F
ile

 S
iz

e 
(M

B
)

Time (seconds)

Input Staged
Output Produced

Job Running

Figure 14. I/O Delayed

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

F
ile

 S
iz

e 
(M

B
)

Time (seconds)

Input Staged
Output Produced

Job Running

Figure 15. Neither Delayed

13



with small modifications, could present a sparse file inter-
face. Or, the ExNode could be built on top of sparse file
servers, thus adding a new degree of flexibility (and failure
modes) into aggregate distributed storage.

As a synchronization device, the sparse file bears a sim-
ilarily to Linda’s tuple space. [3] A Linda space is a
shared medium where items are referenced indirectly by
their structured properties. Clients synchronize by block-
ing while waiting for a tuple that meets their requirements.
In contrast, a sparse file is unstructured and has a unique
name.

9. Conclusion

The sparse file is a new abstraction for process synchro-
nization. Like a file, it provides storage for a sequential
array of bytes, although mass storage is not its primary pur-
pose. Unlike a file, it exposes the underlying structure, in-
forming the caller what data are present and what are miss-
ing. The unique feature of separating logical file size from
data written allows clients to infer the completion of a file
without reference to external systems.

These features permit readers and writers to synchro-
nize themselves on data in transit. Such migratory data is
common in distributed omcputing systems, where the in-
puts, outputs, and intermediates are rarely accessed directly
from their home storage systems. We have outlined several
common computing scenarios where the sparse file would
improve the management and performance of distributed
systems. Future work in this area may concentrate on the
implementation of sparse files. We have demonstrated that
a simple implementation is quite possible, although an im-
provement to random access writing is warranted.

In conclusion, we observe that the traditional abstrac-
tions found in operating systems have difficulty making
the transition to distributed systems. Although ideas such
as remote procedure call and distributed filesystems have
achieved widespread deployment, they fail in unique and
complex ways when deployed in wide area distributed sys-
tems with high variablity in reliability and timing. We ques-
tion whether other fundamental system abstractions may
benefit from interfaces that admit to the caller that infor-
mation may be incomplete or delayed.

10. Acknowledgements

This research was supported in part by a Cisco Dis-
tinguished Graduate Fellowship, a Lawrence Landweber
NCR Fellowship in Distributed Systems, and the Wiscon-
sin Alumni Research Foundation.

References

[1] IBM Load Leveler: User’s Guide. I.B.M. Corporation,
September 1993.

[2] AMANDA project home page. http://amanda.berkeley.edu,
September 2002.

[3] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends.
IEEE Computer, 19(8):26–34, August 1986.

[4] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
UFO: A personal global file system based on user-level ex-
tensions to the operating system. ACM Transactions on
Computer Systems, pages 207–233, August 1998.

[5] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-
intensive science. In Proceedings of Advanced Computing
and Analysis Techniques in Physics Research (ACAT), pages
161–163, 2000.

[6] D. Anderson, K. Yocum, and J. Chase. A case for buffer
servers. In Proceedings of the IEEE Workshop on Hot Topics
in Operating Systems (HOTOS), April 1999.

[7] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC storage resource broker. In Proceedings of CASCON,
Toronto, Canada, 1998.

[8] M. Beck, T. Moore, and J. Plank. An end-to-end approach
to globally scalable network storage. In ACM SIGCOMM,
Pittsburgh, Pennsylvania, August 2002.

[9] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,
A. A. Dusseau, R. Arpaci-Dusseau, and M. Livny. Flexibil-
ity, manageability, and performance in a grid storage appli-
ance. In Proceedings of the Eleventh IEEE Symposium on
High Performance Distributed Computing, Edinburgh, Scot-
land, July 2002.

[10] M. J. Frisch and et al. Gaussian 98 revision a.7. Gaussian
Inc., Pittsburgh PA, 1998.

[11] C. Gray and D. Cheriton. Lease: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Twelfth
ACM Symposium on Operating Systems Principles (SOSP),
pages 202–210, 1989.

[12] R. Henderson and D. Tweten. Portable batch system: Exter-
nal reference specification. Technical report, NASA, Ames
Research Center, 1996.

[13] K. Holtman. CMS data grid system overview and require-
ments. CMS Note 2001/037, CERN, July 2001.

[14] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and per-
formance in a distributed file system. ACM Transactions on
Computer Systmes, 6(1):51–81, February 1988.

[15] IEEE/ANSI. Portable operating system interface (POSIX):
Part 1, system application program interface (API): C lan-
guage, 1990.

[16] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In Proceedings of the 14th
ACM symposium on operating systems principles, pages 80–
93, 1993.

[17] M. Kim, L. Cox, and B. Noble. Safety, visibility, and perfor-
mance in a wide-area file system. In 1st USENIX Conference
on File and Storage Technologies (FAST), 2002.

14



[18] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[19] L. Loebel-Carpenter, L. Lueking, C. Moore, R. Pordes,
J. Trumbo, S. Veseli, I. Terekhov, M. Vranicar, S. White,
and V. White. SAM and the particle physics data grid. In
Proceedings of CHEP, 1999.

[20] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and
R. Wolski. The Internet Backplane Protocol: Storage in the
network. In Proceedings of the Network Storage Sympo-
sium, 1999.

[21] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Summer 1985 USENIX
Conference, pages 119–130, 1985.

[22] A. Shoshani, A. Sim, and J. Gu. Storage resource managers:
Middleware components for grid storage. In Proceedings of
the Nineteenth IEEE Symposium on Mass Storage Systems,
2002.

[23] D. Thain, J. Basney, S.-C. Son, and M. Livny. The Kanga-
roo approach to data movement on the grid. In Proceedings
of the Tenth IEEE Symposium on High Performance Dis-
tributed Computing (HPDC10), San Francisco, California,
August 2001.

[24] D. Thain and M. Livny. Multiple bypass: Interposition
agents for distributed computing. Journal of Cluster Com-
puting, 4:39–47, 2001.

[25] D. Thain and M. Livny. Error management in the pluggable
file system. Technical Report 1448, University of Wisconsin
Computer Sciences Department, October 2002.

[26] D. Thain and M. Livny. Error scope on a computational
grid. In Proceedings of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC), July 2002.

[27] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection
in the globus data grid. IEEE International Symposium on
Cluster Computing and the Grid (CCGrid), May 2001.

[28] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a load
sharing facility for large, heterogenous distributed computer
systems. Software: Practice and Experience, 23(12):1305–
1336, December 1993.

15


